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Abstract A stochastic simulation of simultaneous reaction and diffusion is proposed
for the gas-liquid interface formed in the surface of a gas bubble within a liquid. The
interface between a carbon dioxide bubble and an aqueous solution of calcium hydrox-
ide was simulated as an application example, taken from the integrated production of
calcium carbonate. First Gillespie’s stochastic simulation algorithm was applied in
separate reaction and diffusion simulations. The results from these simulations were
consistent with deterministic solutions based on differential equations. However it
was observed that stochastic diffusion simulations are extremely slow. The sampling
of diffusion events was accelerated applying a group molecule transfer scheme based
on the binomial distribution function. Simulations of the reaction-diffusion in the
gas-liquid interface based on the standard Gillespie’s stochastic algorithm were also
slow. However the application of the binomial distribution function scheme allowed
to compute the concentration profiles in the gas-liquid interface in a fraction of the
time required with the standard Gillespie’s stochastic algorithm.
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1 Introduction

Gas-liquid interfaces are of industrial interest in bubble column reactors (Figs. 1, 2).
But the simulation of gas to liquid diffusion with simultaneous reaction is challenging
due to the combination of spatial-dependent and time-dependent differential equations
for diffusion and reaction kinetics. However, the Stochastic Simulation Algorithm
(SSA) and its variants are a valid alternative to the use differential equations.

The SSA was first proposed by Gillespie to simulate homogeneous, or well-stirred
reactive systems [1–4]. In this algorithm the state of the system is represented with
small numbers of molecules, which are recalculated in reaction events occurring at
time intervals depending on the state of the system. Stochastic simulations are consis-
tent with chemical reactions because they are the result of random molecule collisions.
In the same way diffusion is the result of molecular random drifting governed by con-
centration gradients. Diffusion simulations based on the SSA depend on this analogy
between reaction and diffusion [5]. In such simulations the system is divided in homo-

Fig. 1 Bubble column reactor
scheme. Reaction is A+ B→ C
with gas A bubbled in a solution
of B

Fig. 2 Gas-liquid interface in a
bubble, divided in N subvolumes
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geneous sub-volumes, for example this is shown in Fig. 2 for the one-dimensional
gas-liquid interface used in this work. Molecule transfers between the subvolumes are
included as events analogous to unimolecular reactions [6,7].

Application of SSA to reaction-diffusion systems does not require major modifi-
cations, it simply includes two kinds of events, molecule transfer between subvol-
umes, and reactions within the subvolumes [5,8–11]. In comparison the deterministic
approach requires to represent the dependence of concentration on time and distance
with differential equations. Although the computation time required to solve that equa-
tions is small, its deduction is a non-trivial task that would require more time than the
setup of an equivalent stochastic simulation.

Most applications of SSA for diffusion are related to systems of interest in cel-
lular and molecular biology, for example intracellular signaling networks [12], and
dendrites [13]. In the field of chemical and process engineering SSA methods are not
widespread and have been used mainly to model complex systems such as fluidized
beds and processes related with residence time distributions [14]. The lack of sto-
chastic applications to non-biological transport phenomena can be attributed to the
nature of the stochastic simulation algorithms. Their execution times are proportional
to the number of molecules, and it can make diffusion simulations extremely slow
because they use hundreds of molecules distributed in subvolumes. However in sys-
tems combining fast diffusion with slow reactions this problem has been addressed
transferring groups of molecules in each diffusion event, for example with the Multino-
mial Simulation Algorithm (MSA) [15]. This suggests that the main non-biological
application of stochastic reaction-diffusion can be in small-scale tridimensional sys-
tems with complex geometries, difficult to represent with differential equations. But
before undertaking simulations of such systems it is necessary to test stochastic meth-
ods based on basic laws of diffusion and chemical kinetics in simpler one-dimensional
geometries.

In this work we propose the adaptation of the SSA to simulate reaction and diffusion
in the gas-liquid interface layer (Fig. 2) between a bubble of carbon dioxide (CO2, A)
and an aqueous solution of calcium hydroxide (Ca (OH)2, B). Reaction A + B→ C
produces calcium carbonate (CaCO3, C) which remains in the solution (Fig. 1). This
is a well known process, and parameters for both diffusion and reaction are available
in Ref. [16]. Moreover, simultaneous diffusion and reaction in this kind of geometry
is analyzed in textbooks related with transport phenomena [8,17]. The model for
the gas-liquid interface is explained in Sect. 2, the rate of reaction follows a (1,1)-
order chemical kinetics, and depends on the diffusion of A through the interface
layer.

Separate reaction and diffusion simulations based on the SSA were done
before undertaking the simulation of the interface. The results in Sect. 3 coin-
cided with deterministic methods, but it was necessary to improve the speed
of the diffusion simulation. To do this the Next Reaction Method (NRM), Ref.
[18], and multiple molecule transfers based on the binomial distribution function
(BDM), [13,15] were incorporated into the simulations, as described in Sect. 4.
Finally, in Sect. 5, the interface was simulated combining SSA with NRM and
BDM.
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Table 1 Simulation parameters,
from Ref. [16]

Parameter Value

DA 2.2× 10−9 m2 · s−1

DB 1.825× 10−9 m2 · s−1

DC 8.517× 10−10 m2 · s−1

f 10−5 m

k 12.4 m3 ·mol−1 · s−1

Ve 0.01 m

2 Gas-liquid diffusion model

Calcium carbonate is produced in the reactor shown in Fig. 1. The liquid is an aqueous
solution of B and continuous flow of gas A into it generates bubbles. Reaction A+B→
C and the diffusion of reactants A, B and product C occur in the interface between the
bubbles and the bulk liquid. The interfacial film is represented as a flat surface, this
is based on the assumption that the bubbles are spherical, with radii much larger than
the thickness f of the interfacial film [16,17,19].

Within the interface diffusion occurs in the x direction in Fig. 2. Hence for every
species i its concentration (Ci ) depends on time t and distance x to the gas phase. The
form of this dependency is related to the Fick’s diffusion law and the rate of reaction
in equation

∂Ci

∂t
= Di

∂2Ci

∂x2 + νi r (1)

where Di is the diffusion coefficient for species i , and νi = 1 for product C and −1
for reactants A and B [17,19]. The reaction rate is calculated from the concentration
of both reactants in the term r with a (1–1)-order kinetics [20], cited by [16]

r = kCACB. (2)

Values for reaction and diffusion parameters are shown in Table 1.
Boundary conditions for A, B, and C at the “left” border of the system (x = 0 in

Fig. 2) are different for every species [16]. The boundary condition for A,

CA = CA,0 (3)

is of the Dirichlet type because the gas bubble is a source of A and its concentration
is considered constant. Neumann boundary conditions are applied for reactant B and
product C because their diffusion of into the gas is considered negligible, therefore

dCB

dx
= 0,

dCC

dx
= 0. (4)
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For the “right” border of the system (x = f in Fig. 2) the boundary condition is
related to the variation of the number of moles in the bulk liquid due to reaction and
diffusion from the gas. Given that the flux in Fick’s law has a direction opposed to the
concentration gradient the equation is [16]

∂Ci

∂t
= −Di

Ve

(
∂Ci

∂x

)
+ νi r, (5)

where Ve is the specific volume, i.e., the volume of the bulk liquid phase per unit of
area of the gas-liquid interface (the units of the flux are mol/s ·m2).

Initial conditions (t = 0) are also different for each species. CA = 0 for x > 0
because at t = 0 no A molecules have diffused from the gas, but the value at x = 0 is
CA,0. And, given that reaction has not started CC = 0, and CB has the same value as
in the bulk liquid.

Both reaction and diffusion equations can be solved separately using analytic and
numerical techniques. For reaction the concentrations depend on time according to r
defined in Eq. (2),

dCA

dt
= −kCACB, (6)

with dCB/dt = dCA/dt and dCC/dt = − (dCA/dt). The reaction coordinate is
calculated from Eq. (6) as

ε = exp
[
kt

(
CB,0 − CA,0

)]− 1

exp
[
kt

(
CB,0 − CA,0

)]
/CA,0 −

(
1/CB,0

) (7)

and the concentrations are CA = CA,0 − ε, CB = CB,0 − ε, and CC = CC,0 + ε.
The non-stationary diffusion equation in one dimension,

∂C

∂t
= D ∂2C

∂x2 , (8)

can be solved numerically using the Crank-Nicolson (CN) method, a finite difference
scheme for partial differential equations [21]. The ∂C/∂t term is replaced with the
forward difference,

C (t +Δt, x)− C (t, x)

Δt
(9)

and ∂2C/∂x2 is the average of central difference approximations,

C (t, x +Δx)− 2C (t, x)+ C (t, x −Δx)

(Δx)2 , (10)
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evaluated at t and t +Δt [22,23]. These expressions generate a linear system,

UCt+Δt = VCt +W, (11)

which is solved for the concentrations at t + Δt , i.e. Ct+Δt . Matrices U and V are
tridiagonal sparse and its elements are written in terms of the parameter

λ = D Δt

(Δx)2 . (12)

In this work the CN method was used to create concentration profiles for diffusion
with Dirichlet (constant concentration) and Neumann (dC/dx = 0) boundary condi-
tions. In Eq. (11) the constant concentration was represented in the first and last W
elements, while the fictitious boundary method was used for the Neumann condition
[23]. Equation 11 was solved using linear algebra routines from the software Scilab.

However the CN method was not applied to the combined reaction-diffusion prob-
lem because its formulation is not compatible with the boundary condition for x = f .
In Eq. (5) the variation ∂Ci/∂t is the result of the flux crossing the system limit (plus
the reaction term), implying that the concentration correspond to a point N + 1 out-
side the interface. It is possible to define the system with such additional point, and to
include the reaction term νi r in Eq. (11). But there is a subtle issue, the representation
of ∂2C/∂x2 in Eq. (10) assumes that the Fick’s diffusion law is valid in the interval
from x − Δx to x + Δx . It implies that the whole interval is within the interface.
But it is not true if the finite difference equation includes a N + 1 point, in this case
the interface ends within the interval. It would produce a result inconsistent with the
implicit diffusion barrier between interface and bulk liquid.

3 Stochastic simulation algorithm

Gillespie’s stochastic simulation algorithm (SSA) is based on the definition of possible
events within a system. The probability for an event to occur in the next time interval
dt is given by the product adt where the term a is the propensity [4]. The associated
probability density function follows an exponential distribution and thus time interval
for the next event is calculated as [2]

Δt = − ln (ξ1)∑
i ai

(13)

from a uniform random number ξ1 and the propensities ai of the events. For the
chemical reaction A+B→ C an event is the “destruction” of an A, B pair of molecules
and the simultaneous “creation” of a C molecule. This is done simply adding one to
the number of molecules MC and subtracting one to MA and MB. Results from SSA,
compared with the deterministic solution (Eq. 7) are shown in Fig. 3.

In this work stochastic simulation algorithm (SSA) was extrapolated to reaction-
diffusion systems dividing the space in N = 100 subvolumes, see Fig. 2. It was inspired
by the use of subvolume arrangements to mimic tissues or cellular structures in the

123



1870 J Math Chem (2013) 51:1864–1880

Fig. 3 Simulation of the
reaction A + B→ C. Points:
SSA results with MA,0 = 1000.
Continuous lines: analytical
formulas.Upper half
corresponds to the initial
conditions CB,0/CA,0 = 1.5,

CC,0/CA,0 = 0.5, and lower
half to CB,0/CA,0 = 2,

CC,0/CA,0 = 0
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simulation of biological systems [5,12]. Diffusion was represented with molecule
transfers between subvolumes, changing their respective M’s. These transfers were
allowed only between neighbors, a restriction that has been applied in analogous
simulations of intracellular signaling [12]. In fact diffusion stochastic simulations can
be devised with molecule transfers between any pair of subvolumes, but it would
render the model impractical due to the amount of events needed to sample [15]. The
set of subvolumes is analogous to a series of interconnected reactors, or a single reactor
with many reaction channels because reaction events occur within them, in addition
to the molecule transfers.

The SSA is not a method of solution for differential equations, but both describe
the same phenomena. Hence the propensities for reaction (arx) and diffusion (adif ) are
deduced from their associated differential equations. For reaction Eq. (6) is rewritten
in terms of M’s using the molar concentration definition

Ci = Mi/ (NAvV ) , (14)

in this way

d MA

dt
= − k

NAvV
MA MB (15)

where NAv is the Avogadro’s number and the propensity is [2]

arx =
(

k

NAvV

)
MA MB. (16)

In the SSA simulations the volume is fixed, however it is not practical to define
its value in advance because an extremely small V is necessary to get reasonable Mi

values. Hence the simulation volume was defined indirectly from initial concentrations
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(in mol/volume units), and initial numbers of molecules making NAvV= (Mi/Ci )initial,
and replacing its value in Eq. (16).

The diffusion propensity is deduced from the application of Fick’s law, flux =
−D (dC/dx) [24,25]. The flux is proportional to the number of molecule transfer
events occurring per time unit over the area A perpendicular to it. The concentration is
M/ (AΔx), where Δx = f/N is the length of the subvolume (see Fig. 2). Replacing
the concentration in flux’s equation the area cancels out and it gives the propensity
[7,12,13,26]

adif = D
(Δx)2 M. (17)

An alternate way to define diffusion propensity is to use λ = DΔtp/ (Δx)2 where
Δtp is an arbitrary time interval (see Eq. 12). In this way

adif = λ

Δtp
M (18)

and Eq. (13) becomes

Δt

Δtp
= − ln (ξ1)

2λ
∑

i Mi
(19)

(the factor 2 appears because the molecule transfers to left or right are separated events,
with the same propensity). By using Eq. (19) concentration profiles are associated to
t/Δtp values, instead of t . Hence results from a single simulation with a given λ can
be applied to systems with different thickness and diffusivities recalculating Δtp with
λ,D, and Δx .

Boundary conditions for diffusion are related to the number of molecules or the
event propensities. Dirichlet conditions (constant concentration) are applied maintain-
ing Mi constant in the subvolume acting as a molecule source for i . In the same way
the Ci = 0 condition is fulfilled keeping Mi = 0. The Neumann condition dC/dx = 0
implies no diffusion and hence is represented with a zero propensity.

Reaction and diffusion SSA simulations with 1000 initial molecules were tested
comparing their results with values obtained from Eq. (7) (for reaction) and CN method
(for diffusion). Reaction simulations (A + B→ C) were done with initial conditions
CB,0/CA,0 = 1.5, CC,0/CA,0 = 0.5, and CB,0/CA,0 = 2, CC,0/CA,0 = 0. Diffusion
simulations were done for λ = 1 and λ = 0.2 and the following initial and boundary
conditions: initial zero concentration for x > 0, a source in x = 0, and Dirichlet or
Neumann boundary conditions at x = f .

In each case ten simulation runs were done, but in order to not “overcrowd” Figs. 3
and 4 results from all runs were averaged to plot a single series. Additionally for each
reaction run results were compared with values calculated with Eq. (7) at each t and
the Root Mean Square Deviations (RMSD) was calculated. Figure 3 and maximum
and minimum RMSD values in Table 2 show the agreement of SSA with deterministic
methods for reaction. For diffusion results in Fig. 4 show the coincidence between
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Fig. 4 Diffusion in one dimension with a source at x = 0 for λ = 1, λ = 0.2, and t/Δtp =100, 200, 500,
1000, 2000, 5000, and 10 000. Left plots correspond to Dirichlet boundary condition, C (t, f ) = 0. Right
plots correspond to the Neumann boundary condition, dC/dx = 0 at x = f . Continuous lines represent the
Crank–Nicolson (CN) method results. Dots represent results from stochastic simulation algorithm (SSA),
next reaction method (NRM), and binomial distribution method (BDM, only for λ = 0.2)

Table 2 Minimum and
maximum Root Mean Square
Deviations (RMSD) from
deterministic results for
diffusion and reaction stochastic
simulations

Diffusion Reaction
Method Dirichlet Neumann

SSA 0.0169 0.0172 0.0047

0.0262 0.0358 0.0194

NRM 0.0174 0.0169

0.0266 0.0363

BDM 0.0150 0.0168

0.0337 0.0362

stochastic and deterministic CN results. However, a quantitative comparison is difficult
due to the dependence of Δt on a random number (Eq. 13). It makes the SSA to produce
results at time values not uniformly separated, hence they were assigned to the nearest
t/Δtp value. Even so the agreement was good, and RMSD values were below 0.05 in
all cases (Table 2).

For diffusion in a model with many subvolumes SSA requires execution times
that can be several orders of magnitude bigger than in the case of a simple reactive
system [12]. This is caused by the huge number of possible events in a diffusion
simulation, compared with the reaction case. For example, in our model there are 100
subvolumes, and each one has diffusion (to left or right) and reaction, totaling 300
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Table 3 Averaged execution times and number of events for diffusion simulations with stochastic simula-
tion algorithm (SSA), next reaction method (NRM), and binomial distribution method (BDM)

Method Boundary cond. Time (s) Number of events / 108

λ = 1 λ = 0.2 λ = 1 λ = 0.2

SSA Dirichlet 1503 199 9.188 1.298

Neumann 2574 216 13.92 1.364

NRM Dirichlet 2112 297 9.190 1.297

Neumann 3184 310 13.90 1.364

BDM Dirichlet 2

Neumann 5

Simulations were run on a Intel Xeon E5410 processor

events. In comparison a reactive system may include 10 independent reactions or less.
The number of terms in the sum of propensities,

∑
i ai , is equal to the number of events

in the system, hence its value is bigger in the diffusion case, and it produces small Δt
values from Δt = − ln (ξ1) /

∑
i ai (Eq. 13). As a consequence it is necessary to use

many more time-steps to cover the same total simulation time.
Results in Table 3 show that the time required to complete diffusion stochastic

simulations depends on the parameter λ and the boundary conditions (all stochastic
simulations were programmed in the same way, FORTRAN 95 code compiled for
64 bit systems). Simulations with smaller λ values complete the simulation with less
time steps because Δt is inversely proportional to λ (Eq. 19). It caused that execution
times for λ = 1 were of one order of magnitude bigger than those for λ = 0.2.
With a molecule source at x = 0 the Neumann condition produces more molecules
in the subvolumes close to x = f than the Dirichlet condition (see Fig. 4). With
higher Mi values Δt becomes smaller, slowing down the simulation. Hence Neumann
simulations were slower than Dirichlet ones, although their execution times were of
the same order of magnitude.

4 Accelerating stochastic simulations

The Next Reaction Method (NRM) is a scheme to improve the efficiency of the SSA
simulations reducing the number of random number generations and its associated
computation time. It was proposed by Gibson and Bruck after the First Reaction
Method (FRM) that appeared in one of Gillespie’s seminal papers [1,18]. In FRM the
expected time of occurrence for a single event,

tp = − ln (ξ) /a + t, (20)

is defined as its “putative time”. The event with the smallest tp is selected, and after it
propensities and putative times are recalculated with new random numbers. The NRM
is essentially an improved FRM that reuses tp values whenever possible instead of
recalculating all them [18]. In every time-step the events whose propensity changes
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are identified using a dependence graph, and their putative times are rescaled according
to

tp :=
(

aold

anew

) (
tp − t

)+ t. (21)

Events with a = 0 are assigned an infinite tp [18, note 11].
The NRM was developed for complex reaction models, for example those describ-

ing gene expression [27], and has been applied as a spatial-NRM to multidimensional
models for intracellular signaling [12]. The one-dimensional reaction-diffusion model
used in this work is much more simpler than the aforementioned examples. The reac-
tion events occur within the subvolumes, and for diffusion events propensities and
putative times need only to be recalculated for the two subvolumes involved, therefore
the event dependence graph is reduced to the links between the subvolumes and their
immediate neighbors.

The results in Fig. 4 and Table 2 show agreement between stochastic NRM simula-
tions and the deterministic CN method. But nevertheless the efficiency of the stochas-
tic simulations was not improved. Their averaged execution time in Table 3 is higher
than the value for the SSA simulations in all cases, although there was no significant
difference between the number of events required by both methods. It implies that
the speed advantage of the next reaction method in complex geometries is lost for
one-dimensional simulations. Indexed event queues make NRM faster by avoiding
redundant calculations [5], but its effect is lost when the interdependence of events is
very simple, as it happens in the one-dimensional system in Fig. 2. Due to the need
to recalculate putative times in neighbor subvolumes for every transfer event NRM
is handicapped with hundreds of events in the same way SSA is. It suggests that the
simulation efficiency can only be improved using a simulation strategy based on the
transfer of molecule groups instead of individual molecules. But this approach changes
the problem outline, instead of calculating the time between transfers it implies to cal-
culate the number of molecules to be transferred in a predefined time step.

The molecule group transfer strategy was implemented here as a Binomial Dis-
tribution Method (BDM) following the procedures proposed by Blackwell [13], and
Lampoudi et al. [15]. The transfers were limited to neighbor subvolumes because
allowing transfers between non-adjacent subvolumes is not practical. Using a “diffu-
sion radius” of 2 or more would require too many samples of the binomial distribution
per time step [15]. The number of molecules to be transferred depends on the binomial
probability distribution function,

P (M, n) = M !
(M − n)! (pm)n (1− pm)M−n . (22)

It gives the probability P of selecting n out of M molecules in the subvolume. pm

is the transfer probability for a single molecule, calculated as the sum of the transfer
probabilities to the left (l) or right (r) neighbor subvolumes

pm = pl + pr. (23)
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These probabilities come from the propensities calculated for a single molecule in
the form p = aΔt , where Δt is a fixed time interval. For diffusion between internal
subvolumes Eqs. (17) and (12) give

p = D
(Δx)2 Δt, (24)

and p = λ for simulations defined with such parameter. Where a boundary condition
implies a zero propensity the probability is p = 0.

The time in a BDM simulation is advanced by adding Δt , this allows to produce
results for exactly the same t values in different runs. In every time-step n is calculated
generating a random number to select the n such that ξ ≤ P (M, n). Given n it has
been proposed to simply transfer n/2 molecules to the left and n/2 to the right when
pl = pr [13]. Such choice would be valid, albeit not strictly stochastic. Instead, in this
work the numbers of molecules to be transferred to each side (nl, nr) were calculated
repeating the procedure described for n, but assigning M ← n, n← nl, and pm ← pl
in Eq. (22). Here pl, pr are the transfer probabilities to left and right, and nr = n− nl.

Binomial distribution method simulations for one-dimensional diffusion were set
with Δt = 10−6 s and a fixed molecule transfer probability p = 0.2, as in Ref.
[13]. With f = 10−5 m and Δx = f/100 = 10−7 m it implies a diffusivity D =
2× 10−9 m2 · s−1. These parameters are consistent with the values in Table 1, and the
restrictions [11,15,28]

Δx � (k/D) , (25)

and

Δt ≤ √ε
(Δx)2

D (26)

for an error level ε = 0.05, which gives a maximum limit of 1.02× 10−6 s. P values
were calculated following the procedure described in Ref. [29], and they were stored
in tables corresponding to the M, n pairs to avoid recalculating them [13].

Diffusion results from BDM with Dirichlet and Neumann conditions coincided
with those from the deterministic CN method, and SSA and NRM stochastic methods,
see Fig. 4 and Table 2. As expected results in Table 3 show that BDM is much more
faster than the other stochastic methods. Diffusion simulations done with BDM took
in average 0.01 (Dirichlet condition) and 0.02 (Neumann condition) of the SSA time.
This is not a very surprising result considering the transfer of several molecules in
every step, in opposition to the single transfer of the SSA and NRM.

5 Reaction-diffusion simulation

Reaction-diffusion simulations based on SSA include three possible events in each
subvolume: reaction, transfer to the left, or transfer to the right. In this work both the
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kind of event and the subvolume were selected at each time step generating a single
random number ξ2. The propensities were kept in a matrix of the form

⎡
⎢⎢⎢⎣

a11 a12 a1N

a21 a22 a2N
...

...
. . .

aE1 aE2 aE N

⎤
⎥⎥⎥⎦

where ai j is the propensity of the event i in the subvolume j , and E = 3 is number of
possible events in the subvolume. Within a nested double loop the pair kl that fulfills
the condition

ξ2

⎛
⎝ E∑

i=1

N∑
j=1

ai j

⎞
⎠ ≤

k∑
i=1

l∑
j=1

ai j , (27)

gives the event (row k) and subvolume (column l). The same scheme, without reaction
propensities (E = 2), was used for diffusion SSA simulations.

Reaction propensities were calculated in the same way described for the diffusion
simulations (Eq. 16) using NAvV = (MA/CA)x=0. The source of A at x = 0 implies
that CA (x = 0) is constant (Eq. 3), it was applied keeping MA,1 unchanged for reaction
or molecule transfer events in the first subvolume (x = 0, Fig. 2). Similarly bulk fluid
was treated as a source of B by keeping constant its number of molecules in the N
subvolume. The Neumann conditions in Eq. (4) imply a diffusion barrier between the
gas an the interface layer. They were applied assigning a propensity a = 0 for B or C
molecule transfer events from the first subvolume to the left. The boundary condition
for diffusion between interface and bulk liquid depends on the term (Di/Ve) (∂Ci/∂x)

in Eq. (5) [8,11]. The propensity for the associated molecule transfer events,

adif = D
VeΔx

M, (28)

was deduced following the same reasoning used for Eq. (17).
Reaction-diffusion simulations of the gas-liquid interface were run for 0 ≤ t ≤ 0.5s

with the same N = 100 subvolumes and the parameters in Table 1. Initial concen-
trations and numbers of molecules were CA,0 = 1.0 mol · m−3 with MA,0 = 200 in
the first subvolume (as explained before it was kept constant), CB,0 = 5.0 mol ·m−3

with MB,0 = 1000 in every internal subvolume, and CC,0 = 0. The SSA simulations
are extremely slow due to the sampling of all molecule transfers as separate events,
they required in average 24 h with a system based on the Intel Xeon E5410 proces-
sor, or 18 h with an Intel core-i7 processor. Hence the reaction-diffusion SSA can be
considered a method of brute force.

The performance of reaction-diffusion simulations is improved using fixed times for
diffusion events, combined with Gillespie’s SSA for reactions. This scheme appears
in the operator split method by Rodriguez et al. [30], and the multinomial simulation
algorithm (MSA) by Lampoudi et al. [15]. The MSA was chosen because it uses the
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binomial probability distribution function (Eq. 22) for multiple molecule transfers. The
results in Sect. 4 (Table 3 ) show that this BDM-based diffusion increases the efficiency
of the simulation. Hence in this work the MSA scheme was adapted combining the
binomial distribution method for diffusion with the stochastic simulation algorithm
for reaction (BDM-SSA), and with the next reaction method (BDM-NRM).

With simultaneous fast diffusion and slow reactions several diffusion events can
occur in the time lapses between reactions. Therefore diffusion events were sampled
much more frequently than the reactions using for diffusion a Δt smaller than the time
between reaction events. Following MSA reaction events were executed separately,
but reactants are removed before the diffusion and the products are added after it to
prevent the transfer of molecules not yet added, or already removed [15]. For the
diffusion (BDM) part of the simulation P (M, n) tables were used, with p values from
Eq. (24) for molecule transfers between internal subvolumes, and

p = D
VeΔx

Δt (29)

between interface and bulk liquid (see Eq. 28). An additional safeguard checked the
error level defined in Eq. (26), it was observed in the simulations that O (Δt) ≈ 10−8 s,
corresponding to ε � 0.001 (see Eq. 26).

Results from the three simulation methods, SSA, BDM+SSA, and BDM+NRM
coincided in Fig. 5. Additionally, the differences between their results were quantified
using a mean deviation from the average, defined as

MDA (y) =
√

1

N

∑N

i=1

(
yi − yi

)2 (30)

where yi is the value C/CA,0 for A, B, or C in subvolume i , and ȳi is the average value
from the three methods. For each species the MDA was calculated at t (s) = 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.30, 0.35, 0.40, 0.45, 0.50 and maximum
and minimum values in Table 4 show the agreement between the three simulation
methods. In average the BDM-NRM variant took 0.171 of the time required by the
SSA, and the BDM-SSA 0.172; that is 3–4 h with the same systems. It shows that the
choice of SSA or NRM for the reaction events has little or no effect on simulation
speed for reaction-diffusion. The increased efficiency of both BDM-SSA and BDM-
NRM is mostly due to the application of BDM. This is consistent with the difference
of more than one order of magnitude between the numbers of reaction and diffusion
events [15].

During the simulation the combined effects of reaction and diffusion created the
concentration profiles shown in Fig. 5. The behavior of the whole interface film was
analogous to an hypothetical reactor with an input of gas A at x = 0. Diffusion
predominated for species A because the continuous feed of its molecules from the gas
source at x = 0 compensated its deletion in the reaction events. Due to this during
the beginning of the simulation the result was similar to the diffusion simulations
with the Neumann condition (Fig. 4). As the simulation advanced the feed from the
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Fig. 5 Concentration results for reaction-diffusion with stochastic simulation algorithm (SSA), and bino-
mial distribution method (BDM+SSA and BDM+NRM variants). Each row includes two plots for the same
species at different times. First row is for A, second for B, and third for C. The values are divided by the
initial concentration of A, CA,0

Table 4 Minimum and
maximum mean deviations from
the average (Eq. 30) for
reaction-diffusion

Variable (y)
Method CA/CA,0 CB/CA,0 CC/CA,0

SSA 0.0079 0.0033 0.0015

0.0194 0.0392 0.0446

BDM+SSA 0.0076 0.0035 0.0014

0.0189 0.0453 0.0452

BDM+NRM 0.0068 0.0036 0.0017

0.0201 0.0418 0.0428
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gas spreaded A molecules over the entire interface film, and its concentration values
tended to CA,0.

Species B was consumed in the reaction A+B→ C, but its concentration profiles
were not governed by the diffusion of reactant A. Instead, due to the fast diffusion they
were almost flat during the entire simulation. In every subvolume the occurrence of
reaction events changes the number of B molecules, but it was quickly compensated
with transfers from the neighbor subvolumes because many more transfers occur per
time unit than reactions.

The number of C molecules in a given subvolume depends on the availability of A
and B molecules because it is the product of the reaction. The initial conditions imply
that there are B molecules in all subvolumes, but not A ones. As a result during the
beginning of the simulation the reaction was governed by the diffusion of A. It acted
as limiting reactant close to the source at x = 0, hence CC was higher in the left side
of the interface film due to the availability of A molecules.

By the end of the simulation the product C was uniformly dispersed in the film,
but its concentration tended to the value CB,0. Given that the system has a source of
A it indicates that species B acted as a limiting reactant in this part of the simulation.
Reaction events proceeded until subvolumes were depleted of B molecules, and the
bulk liquid did not act as a source of “fresh” molecules. The cause is that molecule
transfers across the interface-liquid boundary are much less probable than within the
interface due to the difference between the specific volume Ve and Δx (see Table 1).
The effect of these parameters can be seen comparing the propensities for a molecule
transfer within the interface (adif, j ), and between the interface and the bulk liquid
(adif,N ). Using the same M in Eqs. (17) and (28) it is obtained adif, j/adif,N = Ve/Δx =
105, implying that transfers within the interface film can be 100 000 times more likely to
occur than transfers across its limit with the liquid. Without diffusion of new molecules
from the liquid CB decreased during the simulation, even near x = f and this limited
the production of C.

6 Conclusion

It is feasible to simulate simultaneous reaction and diffusion in a gas-liquid interface
using stochastic methods in a desktop computer. However application of the standard
stochastic simulation algorithm to this problem produces excessively slow simulations.
It makes necessary to combine SSA with acceleration techniques, such as the next
reaction method or the binomial distribution method, for the diffusion part of the
simulation. It was found that the application of NRM has no advantage over SSA for
this system because it does not require indexed event queues. But the execution times
are vastly reduced by using the BDM for multiple molecule transfers.

The combination of methods proposed in this work improves the efficiency of
stochastic simulations but anyway it requires more execution time than the solution of
differential equations. For biological systems this handicap has been accepted because
they are not amenable to the simulation with deterministic methods. This argument
could not be valid with other diffusion-related problems, however, the main reason
to apply stochastic methods is not their speed but their adaptability. They can accept

123



1880 J Math Chem (2013) 51:1864–1880

different kinds of events into a single repetition structure, and differential equations and
boundary conditions are simply translated into propensities. It means that stochastic
simulations require less time to formulate the problem and program its solution, and
it can compensate their slow speed. It suggests that stochastic simulations formulated
with the BDM or its equivalent are feasible for more complex geometries in reaction-
diffusion systems of industrial interest, particularly in cases where the application of
differential equations result very difficult.
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